### Recent results on nuclear structure functions for light nuclei

Roberto Petti<sup>1</sup> Sergey Kulagin<sup>2</sup>

<sup>1</sup>U. of South Caroline, Columbia

<sup>2</sup>Institute for Nuclear Research, Moscow

HiX Workshop at JLab October 14, 2010

#### Consistency of different experiments



- Shapes of all nuclear cross-section ratios are consistent
- Evaluate χ<sup>2</sup> for each pair of experiments in coarse x-bins within the overlap region of the data sets
- Consistent overall normalization for SLAC E139, NMC and HERMES data sets
- The new JLab E03-103 data is systematically above previous measurements resulting in a χ<sup>2</sup>/d.o.f. = 42.7/12 with respect to SLAC E139 data on the same targets
- An overall normalization factor 0.98 for all JLab E03-103 points improves the statistical consistency with SLAC E139 data to  $\chi^2/d.o.f. = 8.8/12$

#### Predictions for E03-103



- Apply overall normalization factor 0.98 to JLab data on <sup>4</sup>He/D, <sup>9</sup>Be/D and <sup>12</sup>C/D
- ▶ Very good agreement of our predictions with JLab E03-103 for all nuclear targets: χ<sup>2</sup>/d.o.f. = 26.3/60 for W<sup>2</sup> > 2 GeV<sup>2</sup> (for more details see SK and RP, arXiv:1004.3062 [hep-ph])
- Note that this is not a fit. Nuclear corrections at large x is driven by nuclear spectral function, the off-shell function δf(x) was fixed from previous studies.
- A comparison with the Impulse Approximation demonstrates that the off-shell correction is crucial to describe the data leading to both modification of the slope and position of the minimum of the EMC ratios.

Kulagin & Petti (USC & INR)

### Predictions for HERMES



- A good agreement of our predictions with HERMES data for <sup>14</sup>N/D and <sup>84</sup>Kr/D with x<sup>2</sup>/d.o.f. = 14.7/24
  - A comparison with NMC data for <sup>12</sup>C/D shows a significant Q<sup>2</sup> dependence at small x in the shadowing region related to the cross-section for scattering of hadronic states off the bound nucleons nucleons. The model correctly describes the observed x and Q<sup>2</sup> dependence.

## The <sup>3</sup>He/D and D/p data and $F_2^n/F_2^p$

► The <sup>3</sup>He/D data allows extraction of F<sup>n</sup><sub>2</sub>/F<sup>p</sup><sub>2</sub>. Comparison of F<sup>n</sup><sub>2</sub>/F<sup>p</sup><sub>2</sub> extracted from D/p and <sup>3</sup>He/D data provides a consistency test.

•  $\mathcal{R}(D/p)$  ratio. If we know  $R_2 = F_2^D/(F_2^p + F_2^n)$  then

$$F_2^n/F_2^p = 2\mathcal{R}(\mathsf{D}/\mathsf{p})/R_2 - 1$$

▶  $\mathcal{R}(^{3}\text{He/D})$  ratio. If we know  $R_{2}$  and  $R_{3} = F_{2}^{3\text{He}}/(2F_{2}^{p} + F_{2}^{n})$  then

$$F_2^n/F_2^p = (2-z)/(z-1)$$
, with  $z = \frac{3}{2}\mathcal{R}({}^3\text{He/D})R_2/R_3$ 

How about  $R_2$  and  $R_3$ ?



 $R_2$  and  $R_3$  were calculated at the values of x and  $Q^2$  of E03-103 kinematics for x > 0.3 and at fixed  $Q^2 = 3 \text{ GeV}^2$  for x < 0.3.

The Paris wave function was used for D, while the Hannover spectral function was used for  ${}^{3}$ He.

- ▶  $R_2$  and  $R_3$  are similar. A dip at  $x \sim 0.7$  is somewhat bigger for  $R_3$  because of stronger binding in <sup>3</sup>He.
- ► Nuclear effects cancel at x ≈ 0.35, which is consistent with the measurement of EMC effect in other nuclei.

## Extraction of $F_2^n/F_2^p$



Extraction of  $F_2^n/F_2^p$ with the full treatment of nuclear effect (full symbols) and also with no nuclear effects ( $R_2 = R_3 = 1$ , open symbols).

- Significant mismatch in  $F_2^n/F_2^p$  extracted from different experiments. At  $x \sim 0.35$ , where nuclear corrections are negligible, the  $F_2^n/F_2^p$  from E03-103 is 15% higher than that from NMC.
- ▶ Normalization of  $F_2^n/F_2^p$  is directly related to normalization of <sup>3</sup>He/D. Requiring  $F_2^n/F_2^p$  for E03-103 match NMC, we obtain a renormalization factor of  $1.03^{+0.006}_{-0.008}$  for <sup>3</sup>He/D data.

Kulagin & Petti (USC & INR)

# $^{3}\text{He}/\text{D}$ from HERMES and E03-103



To correct for proton excess, HERMES applies the factor

$$C_{is} = \frac{AF_2^N}{ZF_2^P + NF_2^n}$$

with  $F_2^n/F_2^p$  from NMC. E03-103 experiment does it differently, however correction factors are known.

- An unbiased way would be to compare uncorrected data, or corrected in a similar way. However, HERMES exact correction factors are lost. We uncorrect E03-103 data and then apply C<sub>is</sub> together with the factor 1.03.
- After renormalization, E03-103 and HERMES data agree at the overlap (x = 0.35). Our calculation agree with both data (except the region x > 0.8).

## Summary

- From a  $\chi^2$  analysis, we found a good agreement between NMC, SLAC E139 and HERMES data in the overlap region 0.1 < x < 0.7.
- ► JLab E03-103 data appear systematically shifted above SLAC E139 data by an overall normalization factor  $0.98^{+0.005}_{-0.003}$  common to all studied nuclei with A > 4.
- > At small x < 0.05, the shadowing effect is more pronounced in the HERMES <sup>14</sup>N data compared to the NMC <sup>12</sup>C data. This difference can be attributed to the  $Q^2$  dependence, since the average  $Q^2$  of the HERMES experiment is significantly lower than the corresponding one of the NMC experiment. This effect is also confirmed by calculations in a model.
- $\blacktriangleright$  To verify the consistency of <sup>3</sup>He/D data, we study the relation of that to  $F_2^n/F_2^p$  ratio. We extract  $F_2^n/F_2^p$  from both, the E03-103 data on the <sup>3</sup>He/D ratio and the NMC data on the D/p ratio. We found that at x = 0.35 and  $Q^2 \approx 3 \text{ GeV}^2$  the ratio  $F_2^n/F_2^p$  from JLab E03-103 data is about 15% larger than that from the NMC data. Both extractions of  $F_2^n/F_2^p$  become consistent if a normalization factor of  $1.03^{+0.006}_{-0.008}$  is applied to the <sup>3</sup>He/D data of E03-103 experiment. After such renormalization the E03-103 and HERMES data on the <sup>3</sup>He/D ratio also become consistent, and our predictions are in a good agreement with both data sets in the region x < 0.85.