Recent results on nuclear structure functions for light nuclei

Roberto Petti ${ }^{1}$
Sergey Kulagin ${ }^{2}$
${ }^{1} \mathrm{U}$. of South Caroline, Columbia
${ }^{2}$ Institute for Nuclear Research, Moscow

HiX Workshop at JLab
October 14, 2010

Consistency of different experiments

- Shapes of all nuclear cross-section ratios are consistent
- Evaluate χ^{2} for each pair of experiments in coarse x-bins within the overlap region of the data sets
- Consistent overall normalization for SLAC E139, NMC and HERMES data sets
- The new JLab E03-103 data is systematically above previous measurements resulting in a $\chi^{2} /$ d.o.f. $=42.7 / 12$ with respect to SLAC E139 data on the same targets
- An overall normalization factor 0.98 for all JLab E03-103 points improves the statistical consistency with SLAC E139 data to $\chi^{2} /$ d.o.f. $=8.8 / 12$

Predictions for E03-103

- Apply overall normalization factor 0.98 to JLab data on ${ }^{4} \mathrm{He} / \mathrm{D},{ }^{9} \mathrm{Be} / \mathrm{D}$ and ${ }^{12} \mathrm{C} / \mathrm{D}$
- Very good agreement of our predictions with JLab E03-103 for all nuclear targets: $\chi^{2} /$ d.o.f. $=26.3 / 60$ for $W^{2}>2 \mathrm{GeV}^{2}$ (for more details see SK and RP, arXiv:1004.3062 [hep-ph])
- Note that this is not a fit. Nuclear corrections at large x is driven by nuclear spectral function, the off-shell function $\delta f(x)$ was fixed from previous studies.
- A comparison with the Impulse Approximation demonstrates that the off-shell correction is crucial to describe the data leading to both modification of the slope and position of the minimum of the EMC ratios.

Predictions for HERMES

- A good agreement of our predictions with HERMES data for ${ }^{14} \mathrm{~N} / \mathrm{D}$ and ${ }^{84} \mathrm{Kr} / \mathrm{D}$ with $\chi^{2} /$ d.o.f. $=14.7 / 24$
- A comparison with NMC data for ${ }^{12} \mathrm{C} / \mathrm{D}$ shows a significant Q^{2} dependence at small x in the shadowing region related to the cross-section for scattering of hadronic states off the bound nucleons nucleons.
The model correctly describes the observed x and Q^{2} dependence.

The ${ }^{3} \mathrm{He} / \mathrm{D}$ and D / p data and F_{2}^{n} / F_{2}^{p}

- The ${ }^{3} \mathrm{He} / \mathrm{D}$ data allows extraction of F_{2}^{n} / F_{2}^{p}. Comparison of F_{2}^{n} / F_{2}^{p} extracted from D / p and ${ }^{3} \mathrm{He} / \mathrm{D}$ data provides a consistency test.
- $\mathcal{R}(\mathrm{D} / \mathrm{p})$ ratio. If we know $R_{2}=F_{2}^{D} /\left(F_{2}^{p}+F_{2}^{n}\right)$ then

$$
F_{2}^{n} / F_{2}^{p}=2 \mathcal{R}(\mathrm{D} / \mathrm{p}) / R_{2}-1
$$

- $\mathcal{R}\left({ }^{3} \mathrm{He} / \mathrm{D}\right)$ ratio. If we know R_{2} and $R_{3}=F_{2}^{3 \mathrm{He}} /\left(2 F_{2}^{p}+F_{2}^{n}\right)$ then

$$
F_{2}^{n} / F_{2}^{p}=(2-z) /(z-1), \text { with } z=\frac{3}{2} \mathcal{R}\left({ }^{3} \mathrm{He} / \mathrm{D}\right) R_{2} / R_{3}
$$

How about R_{2} and R_{3} ?

R_{2} and R_{3} were calculated at the values of x and Q^{2} of E03-103 kinematics for $x>0.3$ and at fixed $Q^{2}=3 \mathrm{GeV}^{2}$ for $x<0.3$.

The Paris wave function was used for D, while the Hannover spectral function was used for ${ }^{3} \mathrm{He}$.

- R_{2} and R_{3} are similar. A dip at $x \sim 0.7$ is somewhat bigger for R_{3} because of stronger binding in ${ }^{3} \mathrm{He}$.
- Nuclear effects cancel at $x \approx 0.35$, which is consistent with the measurement of EMC effect in other nuclei.

Extraction of F_{2}^{n} / F_{2}^{p}

Extraction of F_{2}^{n} / F_{2}^{p} with the full treatment of nuclear effect (full symbols) and also with no nuclear effects ($R_{2}=R_{3}=1$, open symbols).

- Significant mismatch in F_{2}^{n} / F_{2}^{p} extracted from different experiments. At $x \sim 0.35$, where nuclear corrections are negligible, the F_{2}^{n} / F_{2}^{p} from E03-103 is 15% higher than that from NMC.
- Normalization of F_{2}^{n} / F_{2}^{p} is directly related to normalization of ${ }^{3} \mathrm{He} / \mathrm{D}$. Requiring F_{2}^{n} / F_{2}^{p} from E03-103 match NMC, we obtain a renormalization factor of $1.03_{-0.008}^{+0.006}$ for ${ }^{3} \mathrm{He} / \mathrm{D}$ data.

${ }^{3} \mathrm{He} / \mathrm{D}$ from HERMES and E03-103

To correct for proton excess, HERMES applies the factor

$$
C_{i s}=\frac{A F_{2}^{N}}{Z F_{2}^{p}+N F_{2}^{n}}
$$

with F_{2}^{n} / F_{2}^{p} from NMC. E03-103 experiment does it differently, however correction factors are known.

- An unbiased way would be to compare uncorrected data, or corrected in a similar way. However, HERMES exact correction factors are lost. We uncorrect E03-103 data and then apply $C_{i s}$ together with the factor 1.03.
- After renormalization, E03-103 and HERMES data agree at the overlap $(x=0.35)$. Our calculation agree with both data (except the region $x>0.8)$.

Summary

- From a χ^{2} analysis, we found a good agreement between NMC, SLAC E139 and HERMES data in the overlap region $0.1<x<0.7$.
- JLab E03-103 data appear systematically shifted above SLAC E139 data by an overall normalization factor $0.98_{-0.003}^{+0.005}$ common to all studied nuclei with $A \geq 4$.
- At small $x<0.05$, the shadowing effect is more pronounced in the HERMES ${ }^{14} \mathrm{~N}$ data compared to the $\mathrm{NMC}{ }^{12} \mathrm{C}$ data. This difference can be attributed to the Q^{2} dependence, since the average Q^{2} of the HERMES experiment is significantly lower than the corresponding one of the NMC experiment. This effect is also confirmed by calculations in a model.
- To verify the consistency of ${ }^{3} \mathrm{He} / \mathrm{D}$ data, we study the relation of that to F_{2}^{n} / F_{2}^{p} ratio. We extract F_{2}^{n} / F_{2}^{p} from both, the E03-103 data on the ${ }^{3} \mathrm{He} / \mathrm{D}$ ratio and the NMC data on the D / p ratio. We found that at $x=0.35$ and $Q^{2} \approx 3 \mathrm{GeV}^{2}$ the ratio F_{2}^{n} / F_{2}^{p} from JLab E03-103 data is about 15% larger than that from the NMC data. Both extractions of F_{2}^{n} / F_{2}^{p} become consistent if a normalization factor of $1.03_{-0.008}^{+0.006}$ is applied to the ${ }^{3} \mathrm{He} / \mathrm{D}$ data of E03-103 experiment. After such renormalization the E03-103 and HERMES data on the ${ }^{3} \mathrm{He} / \mathrm{D}$ ratio also become consistent, and our predictions are in a good agreement with both data sets in the region $x<0.85$.

